Mining Frequent Patterns in Data Streams at Multiple Time Granularities

Chris Giannella, Jiawei Han, Jian Pei, Xifeng Yan, Philip S.Yu 2002

www-faculty.cs.uiuc.edu/~hanj/pdf/fpstm03.pdf

2008年10月08日 論文ゼミ M1 武智環

概要

- 頻出パターンのマイニングは、広く研究されてきているが、流動的なデータだと難しい。
- 最初ほとんど確認されないパターンでも、 データが集まっていけば、頻出パターンとなったりする。

• FP-Streamを用いている

既往の研究

- 頻出パターンのマイニングは多くのアルゴリズムがある
 - Apriori [Agrawal & Srikant 1994]
 - FP-growth [Han, Pei & Yin 2000]
 - FP-tree [Han, Pei & Yin 2000]
 - CLOSET [Pei, Han & Mao 2000]
 - CHARM [Pei, Han & Yin 2002]

パターンの定義

- パターンのカテゴリを3つに分ける
 - 頻出パターン >σ
 - σ>時々起こるパターン>ε
 - 不定期パターン

Support = 出現パターン/扱うデータ min_support=σ maximum support error = ε

- FP-Streamを構成する2つのもの
 - メインの記録から得られる全体的な頻出パターン
 - Pattern-treeに埋め込まれた「tilted-time window」

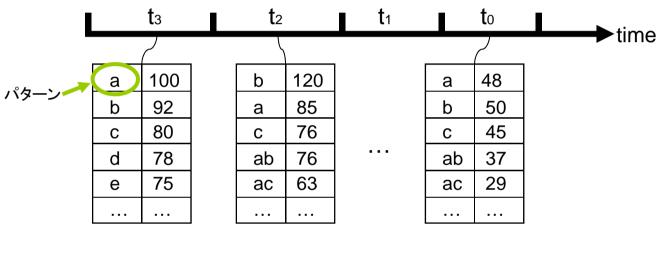
時間の影響を受ける頻出パターンのマイニング

- 比較的最近の詳細なデータへの興味
- 長期間の変化をみるとデータが粗くなる
- 「今」に近いほど精度がいい
- 精度を求めると、データの期間が短く、データの長さを求めると、精度が落ちる

Natural Tilted-Time Windows Frames

Frequent Pattern for Tilted-Time Windows

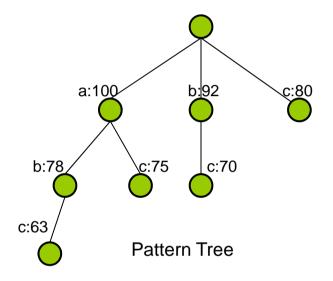
• 先の時系列の中に、頻出パターンのデータを組み込むことで、過去の情報を保持したまま分析に使える



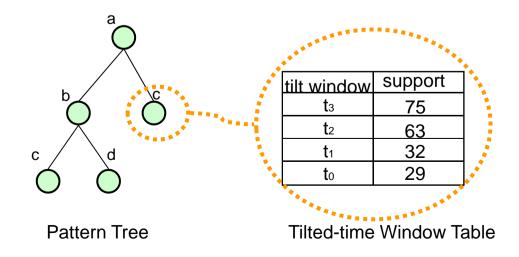
- t₂とt₃で頻出のパターンは何か?
- [a,b]が頻出なのはいつか?
- t3とtoの変化を裏付けるものは何か?
 - 過去のデータ同士の比較が可能
 - 頻出パターン毎に重み付けが可能

Pattern-treeの記述方法

pattern	support
а	100
b	92
С	80
ab	78
ac	75
bc	70
abc	63



- •ノード毎にパターンを 示している
- ●頻出パターンの記述 が可能



●それぞれのノードにTiletedtime Windowsを組み込むと 簡潔

Logarithmic Tilted-time Window

$$\cdots 8 \times \frac{1}{8}, \quad 4 \times \frac{1}{4}, \quad 2 \times \frac{1}{2}$$

$$366 \times 24 \times 4 = 35136$$

$$\log_2(365 \times 24 \times 4) + 1 \approx 17$$

$$\log_2(n)+1$$

●大量のデータであった場合も、 対数をとることで、分析に用い やすくなる

$$i \ge j, B(i, j)$$

$$U_{k=j}^{i} B_{k} \quad f_{I}(i, j)$$

itemset Iが与えられたとき,

B(i,j)の中のIの頻度

B: *fixedsized batches*

I: given itemset

$$f(n,n)$$
; $f(n-1,n-1)$; $f(n-2,n-3)$; $f(n-4,n-7)$,...

計算方法

$$f(8,8); f(7,7); f(6,5); f(4,1)$$
Level Level Level Level Level Level

$$|B_9\rangle$$

$$f(9,9); f(8,8); [f(7,7)]; f(6,5); f(4,1)$$
Level Level Level Level

$$f(8,7) = f(8,8) + f(7,7)$$

$$f(10,10); f(9,9); f(8,7); [f(6,5)]; f(4,1)$$
Level2

B₁₁
$$f(11,11); f(10,10); [f(9,9)]; f(8,7); [f(6,5)]; f(4,1)$$
Level0 Level1 Level2 Level3

$$f(12,12); f(11,11); f(10,9); f(8,5); [f(4,1)]$$

入力データがなくなったら終了

Algorithm

- 1. FP-treeのなかを空にする
- 2. 頻度を下げるようなitemの集合(f_list)
 - f_listによって得られるデータを途切れることなく, FP-treeに入れていく
- 3. 全てのデータが入ったら, FP-treeを更新 する
 - FP-treeは、FP-streamを使ってる

結果

Data

- ■Number of pattern:10000
- Average length of the maximal pattern: 4
- ■Correlation coefficient between pattern:0.25
- Average confidence in a rule: **0.75**
- ■Support threshold:<u></u>**o** (サポート閾値)

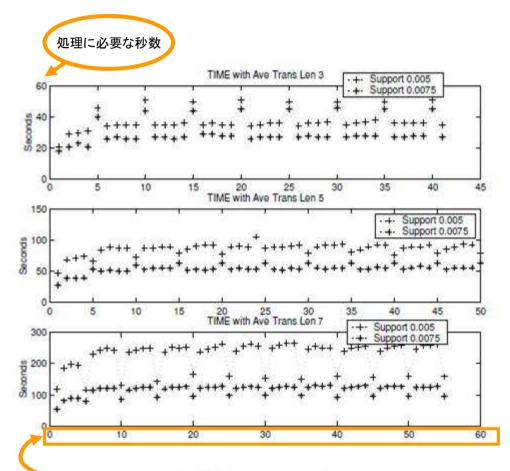


Figure 3.6: FP-stream time requirements

Batch number

まとめ

- 過去の頻度の高いパターンの情報を保持したまま、現在のデータとの分析を行った.
- FP-treeベースの, 頻出パターンの抽出法を 示した。